Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis
نویسندگان
چکیده
Artesunate, an anti-malarial drug, has been repurposed as an anticancer drug due to its induction of cell death via reactive oxygen species (ROS) production. However, the molecular mechanisms regulating cancer cell death and the resistance of cells to artesunate remain unclear. We investigated the molecular mechanisms behind the antitumor effects of artesunate and an approach to overcome artesunate resistance in head and neck cancer (HNC). The effects of artesunate and trigonelline were tested in different HNC cell lines, including three cisplatin-resistant HNC cell lines. The effects of these drugs as well as the inhibition of Keap1, Nrf2, and HO-1 were assessed by cell viability, cell death, glutathione (GSH) and ROS production, protein expression, and mouse tumor xenograft models. Artesunate selectively killed HNC cells but not normal cells. The artesunate sensitivity was relatively low in cisplatin-resistant HNC cells. Artesunate induced ferroptosis in HNC cells by decreasing cellular GSH levels and increasing lipid ROS levels. This effect was blocked by co-incubation with ferrostatin-1 and a trolox pretreatment. Artesunate activated the Nrf2-antioxidant response element (ARE) pathway in HNC cells, which contributed to ferroptosis resistance. The silencing of Keap1, a negative regulator of Nrf2, decreased artesunate sensitivity in HNC cells. Nrf2 genetic silencing or trigonelline reversed the ferroptosis resistance of Keap1-silenced and cisplatin-resistant HNC cells to artesunate in vitro and in vivo. Nrf2-ARE pathway activation contributes to the artesunate resistance of HNC cells, and inhibition of this pathway abolishes ferroptosis-resistant HNC. CONDENSED ABSTRACT Our results show the effectiveness and molecular mechanism of artesunate treatment on head and neck cancer (HNC). Artesunate selectively killed HNC cells but not normal cells by inducing an iron-dependent, ROS-accumulated ferroptosis. However, this effect may be suboptimal in some cisplatin-resistant HNCs because of Nrf2-antioxidant response element (ARE) pathway activation. Inhibition of the Nrf2-ARE pathway increased artesunate sensitivity and reversed the ferroptosis resistance in resistant HNC cells.
منابع مشابه
EGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells
Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of epidermal growth factor receptor (EGFR) with resistance to cytotoxic chemotherap...
متن کاملHederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway
Acquired resistance to cisplatin is the most common reason for the failure of cisplatin chemotherapy. Hederagenin, triterpenoids extracted from ivy leaves, exhibits antitumor activity in various types of cancer. However, the therapeutic potential of hederagenin in head and neck cancer (HNC) has remained unclear. Therefore, we examined the effects of hederagenin in cisplatin-resistant HNC cells ...
متن کاملInhibition of Glucosylceramide Synthase Sensitizes Head and Neck Cancer to Cisplatin.
Glucosylceramide synthase (GCS) overexpression is associated with multidrug resistance in several human cancers. GCS blockade, which overcomes multidrug resistance by downregulating P-glycoprotein (P-gp), has not been tested in head and neck cancer (HNC). This study investigates whether GCS is targetable in HNC by assessing whether GCS inhibition sensitizes HNC to cisplatin. The effect of genet...
متن کاملGeneration of Cisplatin-Resistant Ovarian Cancer Cell Lines
Ovarian cancer is the most lethal gynecological cancer in which cisplatin-based treatment plays fundamental role as the first line chemotherapy option. However, development of platinum-resistance is a critical and poorly understood problem in ovarian cancer treatment. Although in vitro generation of platinum-resistant ovarian cancer cell lines is a long established approach to uncover the molec...
متن کاملInvestigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کامل